Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29.230
Filter
1.
Sci Total Environ ; 927: 172149, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569970

ABSTRACT

Metalloid co-contamination such as arsenic (As) and antimony (Sb) in soils has posed a significant threat to ecological balance and human well-being. In this study, a novel magnetic graphene-loaded biochar gel (FeBG) was developed, and its remediation potential for the reclamation of AsSb spoiled soil was assessed through a six-month soil incubation experiment. Results showed that the incorporation of iron substances and graphene imparted FeBG with enhanced surface characteristics, such as the formation of a new FeO bond and an enlarged surface area compared to the pristine biochar (BC) (80.5 m2 g-1 vs 57.4 m2 g-1). Application of FeBG significantly decreased Na2HPO4-extractable concentration of As in soils by 9.9 %, whilst BC addition had a non-significant influence on As availability, compared to the control. Additionally, both BC (8.2 %) and FeBG (16.4 %) treatments decreased the Na2HPO4-extractable concentration of Sb in soils. The enhanced immobilization efficiency of FeBG for As/Sb could be attributed to FeBG-induced electrostatic attraction, complexation (Fe-O(H)-As/Sb), and π-π electron donor-acceptor coordination mechanisms. Additionally, the FeBG application boosted the activities of sucrase (9.6 %) and leucine aminopeptidase (7.7 %), compared to the control. PLS-PM analysis revealed a significant negative impact of soil physicochemical properties on the availability of As (ß = -0.611, P < 0.01) and Sb (ß = -0.848, P < 0.001) in soils, in which Sb availability subsequently led to a suppression in soil enzyme activities (ß = -0.514, P < 0.01). Overall, the novel FeBG could be a potential amendment for the simultaneous stabilization of As/Sb and the improvement of soil quality in contaminated soils.


Subject(s)
Antimony , Arsenic , Charcoal , Environmental Restoration and Remediation , Graphite , Mining , Soil Pollutants , Antimony/chemistry , Antimony/analysis , Graphite/chemistry , Charcoal/chemistry , Soil Pollutants/analysis , Arsenic/analysis , Environmental Restoration and Remediation/methods , Soil/chemistry
2.
Environ Monit Assess ; 196(5): 478, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664274

ABSTRACT

The management of invasive weeds on both arable and non-arable land is a vast challenge. Converting these invasive weeds into biochar and using them to control the fate of herbicides in soil could be an effective strategy within the concept of turning waste into a wealth product. In this study, the fate of imazethapyr (IMZ), a commonly used herbicide in various crops, was investigated by introducing such weeds as biochar, i.e., Parthenium hysterophorus (PB) and Lantana camara (LB) in sandy loam soil. In terms of kinetics, the pseudo-second order (PSO) model provided the best fit for both biochar-mixed soils. More IMZ was sorbed onto LB-mixed soil compared to PB-mixed soil. When compared to the control (no biochar), both PB and LB biochars (at concentrations of 0.2% and 0.5%) increased IMZ adsorption, although the extent of this effect varied depending on the dosage and type of biochar. The Freundlich adsorption isotherm provided a satisfactory explanation for IMZ adsorption in soil/soil mixed with biochar, with the adsorption process exhibiting high nonlinearity. The values of Gibb's free energy change (ΔG) were negative for both adsorption and desorption in soil/soil mixed with biochar, indicating that sorption was exothermic and spontaneous. Both types of biochar significantly affect IMZ dissipation, with higher degradation observed in LB-amended soil compared to PB-amended soil. Hence, the findings suggest that the preparation of biochar from invasive weeds and its utilization for managing the fate of herbicides can effectively reduce the residual toxicity of IMZ in treated agroecosystems in tropical and subtropical regions.


Subject(s)
Charcoal , Herbicides , Nicotinic Acids , Plant Weeds , Soil Pollutants , Soil , Charcoal/chemistry , Soil Pollutants/analysis , Herbicides/analysis , Herbicides/chemistry , Soil/chemistry , Adsorption , Nicotinic Acids/chemistry , Lantana/chemistry , Introduced Species , Kinetics , Asteraceae/chemistry
3.
Nat Food ; 5(4): 301-311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605129

ABSTRACT

Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.


Subject(s)
Methylmercury Compounds , Oryza , Soil Microbiology , Soil Pollutants , Methylmercury Compounds/metabolism , Methylmercury Compounds/analysis , Oryza/metabolism , Oryza/chemistry , Oryza/microbiology , Soil Pollutants/metabolism , Soil Pollutants/analysis , Bioaccumulation , Soil/chemistry , Humans , Microbiota/drug effects
4.
Sci Rep ; 14(1): 8971, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637594

ABSTRACT

Elevated levels of metal(loid)s in soil may pose potential threats to the ecosystem and can be harmful for human health. The concentrations of As, Cd, Pb, Cr and Ni were determined in agricultural soil collected from 45 pistachio orchards around Feizabad city, Khorasan Razavi province, Iran using ICP-OES. Also, soil pollution indices including contamination factor (CF), pollution load index (PLI) and geo-accumulation index (Igeo) were evaluated. In addition, non-carcinogenic and carcinogenic risk indices were estimated. The mean concentrations of metal(loid)s were in the order of Ni = 466.256 > Cr = 120.848 > Pb = 12.009 > As = 5.486 > Cd = 0.394 mg/kg. Concentrations of As, Cd and Pb in the soil samples were within their respective permissible limits set by World Health Organization (WHO). But concentrations of Cr and Ni in 84.4 and 100% of the samples, respectively exceeded the WHO allowable limits. The CF, PLI and Igeo showed that soil of some of the pistachio orchards was contaminated with some metals. The possible sources of the metals in the soil are application of pesticides, chemical fertilizers, manures as well as irrigation water. Hazard quotient (HQ) ad Hazard index (HI) values from soil of all the orchards were found to be well below the respective threshold limit (1), suggesting that there is no immediate non-cancer threat arising from the contamination at all the orchards with metal(loid)s for children and adults. The highest cancer risk values (1.13E-02 for children and 1.25E-03 for adults) were estimated for Ni in the soil. Collectively, this study provides valuable information to improve the soil in the pistachio orchards to reduce metal(loid)s contamination and minimize the associated health risks to the population in the area.


Subject(s)
Metals, Heavy , Pistacia , Soil Pollutants , Adult , Child , Humans , Soil , Metals, Heavy/analysis , Environmental Monitoring , Ecosystem , Cadmium , Lead , Soil Pollutants/analysis , Environmental Pollution/analysis , Risk Assessment , China
5.
Sci Rep ; 14(1): 8920, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637588

ABSTRACT

Land transportation is a major source of heavy metal contamination along the roadside, posing significant risks to human health through inhalation, oral ingestion, and dermal contact. Therefore, this study has been designed to determine the concentrations of vehicular released heavy metals (Cd, Pb, Ni, and Cu) in roadside soil and leaves of two commonly growing native plant species (Calotropis procera and Nerium oleander).Two busy roads i.e., Lahore-Okara road (N-5) and Okara-Faisalabad roads (OFR) in Punjab, Pakistan, were selected for the study. The data were collected from five sites along each road during four seasons. Control samples were collected ~ 50 m away from road. The metal content i.e. lead (Pb), cadmium (Cd) nickel (Ni) and copper (Cu) were determined in the plant leaves and soil by using Atomic Absorption Spectrophotometer (AAS). Significantly high amount of all studied heavy metals were observed in soil and plant leaves along both roads in contrast to control ones. The mean concentration of metals in soil ranged as Cd (2.20-6.83 mg/kg), Pb (4.53-15.29 mg/kg), Ni (29.78-101.26 mg/kg), and Cu (61.68-138.46 mg/kg) and in plant leaves Cd (0.093-0.53 mg/kg), Pb (4.31-16.34 mg/kg), Ni (4.13-16.34 mg/kg) and Cu (2.98-32.74 mg/kg). Among roads, higher metal contamination was noted along N-5 road. Significant temporal variations were also noted in metal contamination along both roads. The order of metal contamination in soil and plant leaves in different seasons was summer > autumn > spring > winter. Furthermore, the metal accumulation potential of Calotropis procera was higher than that of Nerium oleander. Therefore, for sustainable management of metal contamination, the plantation of Calotropis procera is recommended along roadsides.


Subject(s)
Calotropis , Metals, Heavy , Nerium , Soil Pollutants , Humans , Cadmium/analysis , Soil , Biodegradation, Environmental , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Nickel , Plants , Environmental Monitoring
6.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38564256

ABSTRACT

Microbial arsenic (As) methylation in paddy soil produces mainly dimethylarsenate (DMA), which can cause physiological straighthead disease in rice. The disease is often highly patchy in the field, but the reasons remain unknown. We investigated within-field spatial variations in straighthead disease severity, As species in rice husks and in soil porewater, microbial composition and abundance of arsM gene encoding arsenite S-adenosylmethionine methyltransferase in two paddy fields. The spatial pattern of disease severity matched those of soil redox potential, arsM gene abundance, porewater DMA concentration, and husk DMA concentration in both fields. Structural equation modelling identified soil redox potential as the key factor affecting arsM gene abundance, consequently impacting porewater DMA and husk DMA concentrations. Core amplicon variants that correlated positively with husk DMA concentration belonged mainly to the phyla of Chloroflexi, Bacillota, Acidobacteriota, Actinobacteriota, and Myxococcota. Meta-omics analyses of soil samples from the disease and non-disease patches identified 5129 arsM gene sequences, with 71% being transcribed. The arsM-carrying hosts were diverse and dominated by anaerobic bacteria. Between 96 and 115 arsM sequences were significantly more expressed in the soil samples from the disease than from the non-disease patch, which were distributed across 18 phyla, especially Acidobacteriota, Bacteroidota, Verrucomicrobiota, Chloroflexota, Pseudomonadota, and Actinomycetota. This study demonstrates that even a small variation in soil redox potential within the anoxic range can cause a large variation in the abundance of As-methylating microorganisms, thus resulting in within-field variation in rice straighthead disease. Raising soil redox potential could be an effective way to prevent straighthead disease.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Oryza/microbiology , Soil/chemistry , Methylation , Bacteria/genetics , Cacodylic Acid , Oxidation-Reduction , Soil Pollutants/analysis
7.
Article in English | MEDLINE | ID: mdl-38600781

ABSTRACT

The pyroligneous acid (PA), or wood vinegar, is a byproduct of wood carbonization during the slow pyrolysis process. PA is recognized globally as a safe compound for agriculture due to its various beneficial properties, such as antioxidant, antibacterial, antifungal, and termiticidal properties. However, the impact of different PA concentrations on beneficial soil organisms, such as earthworms has not been investigated. The present study aims to understand the effects of different PA concentrations on earthworm Eisenia fetida. The earthworms were exposed to nine different concentrations of PA in soils, including their control. The acute toxicity assay was performed after 14 days of exposure, and the chronic toxicity assay was performed up to 8 weeks after exposure. The results from the acute toxicity assay demonstrated no significant effect on earthworm mortality. The chronic toxicity assay showed that lower PA concentrations (0.01-0.2% of weight/weight PA in soil) promoted cocoon and juvenile production in soils, whereas higher PA concentrations (0.5 and 1%) had a negative effect. These findings highlight the potential of PA to enhance soil fertility at lower concentrations, up to 0.2%, by stimulating worm activity and subsequent manure production. The outcomes of this study have significant implications for the careful management of PA concentrations within agricultural operations.


Subject(s)
Oligochaeta , Soil Pollutants , Terpenes , Animals , Soil Pollutants/analysis , Fertility , Soil
8.
PLoS One ; 19(4): e0302150, 2024.
Article in English | MEDLINE | ID: mdl-38625994

ABSTRACT

Electroosmosis has been proposed as a technique to reduce moisture and thus increase the stability of soft clay. However, its high energy consumption and uneven reinforcement effect has limited its popularization and application in practical engineering. This paper presents the results of some electrokinetic tests performed on clayey specimens with different electrification time and anode boundary conditions. The results indicate that the timing of the formation of electroosmotic flow (EF) by the water originally contained in different soil cross sections, from the anode to the cathode, varies. The measuring soil cross section nearest the anode first reached the limiting water content of 22%±3% and electroosmosis had to be stopped. Water injection into the anode during electroosmosis enhanced further drainage of other four measuring soil cross sections until the second soil cross section from the anode reached the limiting water content of 30%±2%. Electroosmosis with water injection into the anode technique provides more uniform reinforcement, increasing EF, and environmental protection. The experimental results highlighted the relevant and expected contribution of water injection into the anode on the effectiveness of the electroosmotic treatment as a soft clay improvement technique.


Subject(s)
Electroosmosis , Soil Pollutants , Clay , Electroosmosis/methods , Soil Pollutants/analysis , Soil , Water
9.
Chemosphere ; 355: 141890, 2024 May.
Article in English | MEDLINE | ID: mdl-38575085

ABSTRACT

The co-transport behavior of environmental pollutants with biochar particles has aroused great interests from researchers due to the concerns about pollutant diffusion and environmental exposure after biochar is applied to soil. In this work, the recovery and co-transport behavior of biochar micron-/nano-particles (BCMP and BCNP) and lead (Pb2+) in saturated porous media were investigated under different ionic strength conditions (IS = 1, 5 and 10 mM) under a direct current electric field. The results showed that the electric field could significantly enhance the mobility of Pb adsorbed biochar particles, particularly BCNP. The recovery of Pb laden biochar particles was improved by 1.8 folds, reaching 78.8% at maximum under favorable condition at +0.5 V cm-1. According to the CDE (Convection-Dispersion-Equation) model and DLVO (Derjaguin-Landau-Verwey-Overbeek) theory analysis, the electric field facilitated the transport of Pb carried biochar mainly by increasing the negative charges on biochar surface and improving the repulsive force between biochar and porous media. High IS was favorable for biochar transport under the electric field, but inhibited desorbing Pb2+ from biochar (18% by maximum at IS = 10 mM). By switching the electric field power, a two-stage strategy was established to maximize the recovery of both biochar particles and Pb, where BCNP and Pb recovery were higher than electric field free case by 90% and 35%, respectively. The findings of this study can help build a biochar recovery approach to prevent potential risks from biochar application in heavy metal contaminated soil remediation.


Subject(s)
Environmental Pollutants , Soil Pollutants , Lead , Porosity , Charcoal , Soil , Soil Pollutants/analysis
10.
Bull Environ Contam Toxicol ; 112(4): 57, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565676

ABSTRACT

Both livestock-manure and livestock-manure-derived biochar have been used to remediate heavy metal-contaminated soil. However, direct comparisons of the heavy metal stabilization efficiency of livestock-manure and EQC-manure-biochar (derived from an equal quantity of corresponding livestock-manure) are limited. In the present study, the effect of livestock-manures and EQC-manure-biochars on soil properties and heavy metal bioavailability and leachability were compared using two contrasting soils (Ferralsols and Fluvisols). The results showed that both the livestock-manures and EQC-manure-biochars significantly changed soil pH, available phosphorus, available potassium, alkaline nitrogen and organic matter content (p < 0.05), but the trends were variable. In Ferralsols, the DTPA-extractable Cd and Zn decreased by -0.38%~5.70% and - 3.79%~9.98% with livestock-manure application and by -7.99%~7.23% and - 5.67%~7.17% with EQC-manure-biochars application. In Fluvisols, the DTPA-extractable Cd and Zn decreased by 13.39%~17.41% and - 45.26%~14.24% with livestock-manure application and by 10.76%~16.90% and - 36.38%~16.37% with EQC-manure-biochar application. Furthermore, the change in TCLP-extractable Cd and Zn in both soils was similar to that of DTPA-extractable Cd and Zn. Notably, the Cd and Zn stabilization efficiency of the EQC-manure-biochars was no better than that of the corresponding livestock-manures. These results suggest that the use of livestock-manure-derived biochar is not cost-effective for the remediation of heavy metal-contaminated soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Cadmium/chemistry , Zinc , Manure , Livestock , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal/chemistry , Soil/chemistry , Pentetic Acid
11.
Environ Monit Assess ; 196(5): 414, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38565727

ABSTRACT

This study assessed the physicochemical properties of soils and their levels of heavy metal contents in soils along the Enyigba mining site in Ikwo, Ebonyi State, Nigeria. A total of 96 samples of soil were taken at depths of 0 to 20 cm using a soil auger and core sampler at a horizontal spacing of 100 m between each location and examined using standard laboratory techniques. The control soil samples were taken from the Alex Ekwueme Federal University Experimental and Research Farm in Ebonyi State, at a distance of 50 m from each spot at a depth of 0 to 20 cm. The results obtained from this study showed significant variations in the physicochemical properties and heavy metal levels of the soil from the Enyigba mining site, indicating that the mining activities have contaminated the soil. The result also indicated that mining operations may be responsible for the increase in sand and the decrease in silt and clay particles. The mining site's pH was typically low, indicating that the soil is naturally acidic. The contamination indices showed that lead recorded very high contamination factor of 27.068, while iron, nickel and zinc were low. The observed high concentration factor of lead had an impact on the soil's bulk density, saturated hydraulic conductivity, total porosity, calcium, potassium ion, magnesium ion, total nitrogen, organic carbon, cation exchange capacity, phosphorus and base saturation contents. It is recommended that the government's Ministry of Environment, at all levels, take a proactive stance in managing the excessive and subpar mining operations in the study area.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Soil/chemistry , Nigeria , Environmental Monitoring , Soil Pollutants/analysis , Metals, Heavy/analysis
12.
Environ Monit Assess ; 196(5): 423, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570374

ABSTRACT

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.


Subject(s)
Eucalyptus , Herbicides , Oryza , Quinolines , Sasa , Soil Pollutants , Triazines , Charcoal , Soil , Adsorption , Environmental Monitoring , Herbicides/analysis , Soil Pollutants/analysis
13.
Environ Monit Assess ; 196(5): 417, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570421

ABSTRACT

Heavy metals can have significant impacts on human health due to their toxicity and potential to accumulate in the body over time. Some heavy metals, such as lead, cadmium, mercury, and arsenic, are particularly harmful even at low concentrations. The estimation of hazards of vegetable intake to human health as well as explore the of heavy metals accumulation in different vegetables (cucumbers, tomato, eggplant, and bell peppers) collected in Erbil city from different source locally and imported from nearby country are conducted. The heavy metals concentration (cooper, zinc, lead and cadmium) was measured and analyzed by inductively coupled plasma-optical emission spectrophotometry. The maximum concentration of Pb was 27.95 mg/kg and the minimum was 6.49 mg/kg; for Cd, the concentration was 1.43 and 0.99 mg/kg, 74.94 and 5.14 mg/kg for Zn; and for Cu, the result was 56.25 and 8.2 mg/kg for the maximum and minimum, which they are within limits described by Food Agricultural Organization, but more than health limits and health risks calculated by mean of hazard quotient (HQ) techniques for Cu and Pb which they are more than 1. The local sample that collected in Erbil city show less concentration of heavy metals and low HQ in comparison with imported samples. The carcinogenic risk study shows elevated risk of accumulative consuming of edible part of those plant which they exceed the permissible limit that is 10-6.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Vegetables , Cadmium/analysis , Iraq , Lead , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil Pollutants/analysis
14.
Fungal Biol ; 128(2): 1675-1683, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575240

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment, causing increasing concern because of their impact on soil health, food safety and potential health risks. Four bioremediation strategies were examined to assess the dissipation of PAHs in agricultural soil amended with sewage sludge over a period of 120 days: soil-sludge natural attenuation (SS); phytoremediation using maize (Zea mays L.) (PSS); mycoremediation (MR) separately using three white-rot fungi (Pleurotus ostreatus, Phanerochaete chrysosporium and Irpex lacteus); and plant-assisted mycoremediation (PMR) using a combination of maize and fungi. In the time frame of the experiment, mycoremediation using P. chrysosporium (MR-PH) exhibited a significantly higher (P < 0.05) degradation of total PAHs compared to the SS and PSS treatments, achieving a degradation rate of 52 %. Both the SS and PSS treatments demonstrated a lower degradation rate of total PAHs, with removal rates of 18 % and 32 %, respectively. The PMR treatments showed the highest removal rates of total PAHs at the end of the study, with degradation rates of 48-60 %. In the shoots of maize, only low- and medium-molecular-weight PAHs were found in both the PSS and PMR treatments. The calculated translocation and bioconversion factors always showed values < 1. The analysed enzymatic activities were higher in the PMR treatments compared to other treatments, which can be positively related to the higher degradation of PAHs in the soil.


Subject(s)
Pleurotus , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Soil , Sewage , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Pleurotus/metabolism , Zea mays
15.
Ying Yong Sheng Tai Xue Bao ; 35(3): 789-796, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646767

ABSTRACT

We established the optimal model by using the automatic machine learning method to predict the degradation efficiency of herbicide atrazine in soil, which could be used to assess the residual risk of atrazine in soil. We collected 494 pairs of data from 49 published articles, and selected seven factors as input features, including soil pH, organic matter content, saturated hydraulic conductivity, soil moisture, initial concentration of atrazine, incubation time, and inoculation dose. Using the first-order reaction rate constant of atrazine in soil as the output feature, we established six models to predict the degradation efficiency of atrazine in soil, and conducted comprehensive analysis of model performance through linear regression and related evaluation indicators. The results showed that the XGBoost model had the best performance in predicting the first-order reaction rate constant (k). Based on the prediction model, the feature importance ranking of each factor was in an order of soil moisture > incubation time > pH > organic matter > initial concentration of atrazine > saturated hydraulic conductivity > inoculation dose. We used SHAP to explain the potential relationship between each feature and the degradation ability of atrazine in soil, as well as the relative contribution of each feature. Results of SHAP showed that time had a negative contribution and saturated hydraulic conductivity had a positive contribution. High values of soil moisture, initial concentration of atrazine, pH, inoculation dose and organic matter content were generally distributed on both sides of SHAP=0, indicating their complex contributions to the degradation of atrazine in soil. The XGBoost model method combined with the SHAP method had high accuracy in predicting the performance and interpretability of the k model. By using machine learning method to fully explore the value of historical experimental data and predict the degradation efficiency of atrazine using environmental parameters, it is of great significance to set the threshold for atrazine application, reduce the residual and diffusion risks of atrazine in soil, and ensure the safety of soil environment.


Subject(s)
Atrazine , Herbicides , Models, Theoretical , Soil Pollutants , Soil , Atrazine/analysis , Atrazine/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Herbicides/analysis , Herbicides/chemistry , Soil/chemistry , Biodegradation, Environmental , Machine Learning , Forecasting
16.
Huan Jing Ke Xue ; 45(5): 2913-2925, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629553

ABSTRACT

In this study, a Meta-analysis was used to investigate the pollution status of eight farmland soil heavy metal elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in China. Meanwhile, their spatiotemporal changes and differences between different types of cultivated land were explored. The research data were chosen from 449 relevant literature data collected by CNKI and Web of Science from 2005 to 2021, and the Meta-analysis used a weighted method based on "sampling numbers", "study area", and "standard deviation". The results showed that the national average values of the eight heavy metal elements in Chinese farmland soil were ω(As)11.00 mg·kg-1, ω(Cd)0.350 2 mg·kg-1, ω(Cr)62.91 mg·kg-1, ω(Cu)28.87 mg·kg-1, ω(Hg)0.135 1 mg·kg-1, ω(Ni)28.91 mg·kg-1, ω(Pb)34.67 mg·kg-1,and ω(Zn)90.24 mg·kg-1. Compared with their background values, all elements except As accumulated to some extent, and Cd and Hg accumulated the most, exceeding their background values by 177.9% and 340.3%, respectively. The research results indicated that Cd and Hg were the main pollution elements in farmland soil in China, and their accumulation was mainly influenced by human activities. In terms of their temporal and spatial changes, the Yunnan-Guizhou Plateau and the eastern coast were the most concentrated areas of pollution cases, and the pollution center shifted from the middle reaches of the Yangtze River to the southwest over time. The accumulation of heavy metals in farmland soil was affected by crop planting types, and the accumulation of heavy metals in vegetable and paddy soil was significantly greater than that in other cultivated land types.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Humans , Soil , Farms , China , Cadmium , Lead , Environmental Monitoring/methods , Risk Assessment , Soil Pollutants/analysis , Metals, Heavy/analysis
17.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629564

ABSTRACT

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Subject(s)
Environmental Pollutants , Soil Pollutants , Copper , Lettuce , Environmental Pollutants/analysis , Soil , Catalase , Nitrates/analysis , Anti-Bacterial Agents , Tetracycline/analysis , Charcoal , Soil Pollutants/analysis , Chlorophyll/analysis , Malondialdehyde , Nitrogen/analysis , Proline
18.
Huan Jing Ke Xue ; 45(5): 3005-3015, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629561

ABSTRACT

Guizhou Province ranks first in terms of Hg reserves and production in the country, and rice is its largest grain crop. In order to study the characteristics and pollution causes of soil-rice Hg content at the provincial level in Guizhou and to carry out safe planting zoning, 1 564 pairs of soil-rice samples, 470 natural soil samples, and 203 individual paddy soil samples were collected to test their Hg content and basic physical and chemical properties of the soil. The results showed that:① Paddy soil was mainly neutral and acidic, the paddy soil ω (Hg) range was 0.005-93.06 mg·kg-1, and the geometric mean was 0.864 mg·kg-1. The Hg content of paddy soil in Guizhou Province was significantly higher than that in natural soil (0.16 mg·kg-1,P < 0.05). Compared with the filtered value and control value, the soil samples exceeded the standard by 63.25% and 14.71%, respectively. Among them, the soil Hg pollution in Danzhai County of Qiandongnan Prefecture, Wuchuan County of Zunyi City, Zhenfeng County of Qianxinan Prefecture, and Wanshan District of Tongren City was more prominent. ② Rice ω(Hg) ranged from 0.000 5 to 0.52 mg·kg-1, and the geometric mean was 0.010 mg·kg-1, the percentage of rice Hg content exceeding the standard was 25.87%, and the exceeding points were mainly distributed in Suiyang County of Zunyi City, Zhenfeng County of Qianxinan Prefecture, Xixiu District of Anshun City, Bijiang District of Tongren City, and other industrial and mining activity-intensive areas. ③ The majority of the study area was in the priority protection category (74.75%); the safe use category accounted for (24.62%); and the strictly controlled category (0.93%) was scattered in Danzhai County at the border between Qiannan Prefecture and Qiandongnan Prefecture, Zhenfeng County in Qianxinan Prefecture, and Wanshan District in Tongren. It is not recommended to plant rice, which can be used as feed for reproduction.


Subject(s)
Mercury , Oryza , Soil Pollutants , Soil/chemistry , Oryza/chemistry , Soil Pollutants/analysis , Environmental Monitoring , Mercury/analysis , China
19.
Huan Jing Ke Xue ; 45(5): 2983-2994, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629559

ABSTRACT

Taking a city in Guangdong Province as the research area, the concentration and spatial distribution characteristics of heavy metals in the surface soil were studied to clarify the situation of soil heavy metal pollution and priority control factors, providing basic data for the prevention and control of soil heavy metal pollution in the city. The content characteristics of heavy metals in 221 soil samples in the city were analyzed, and the potential health risk assessment and source analysis were carried out through the Monte Carlo model, the potential health risk assessment (HRA) model, and the PMF receptor model. It was found that heavy metals ω(As), ω(Hg), ω(Cd), ω(Pb), ω(Cr), ω(Cu), ω(Ni), and ω(Zn) in the soil of the city were 18.16, 0.43, 1.46, 68.57, 98.34, 64.19, 26.53, and 257.32 mg·kg-1, respectively, with a moderate to high degree of variation. Except for Ni concentration, the soil concentrations of other heavy metal elements exceeded the background values of soil in Guangdong Province to a certain extent, and the concentrations of Cd and Zn exceeded the national secondary standards, resulting in severe heavy metal pollution; the main sources of heavy metals were industrial sources, and natural parent materials, lead battery manufacturing, transportation, artificial cultivation, and pesticide and fertilizer inputs also had an undeniable impact on the accumulation of heavy metals in the soil. Heavy metals in the soil had a certain degree of tolerable carcinogenic health risk for both children and adults, whereas non-carcinogenic risks could be ignored. The potential health risk of children was greater than that of adults, and the main exposure route was through oral intake. The input sources of pesticides and fertilizers and As should be the main controlling factors for the health risks of heavy metals in the city's soil, followed by mixed sources and Cr. There were differences in the spatial distribution characteristics and relative pollution levels of heavy metals, and it is necessary to deepen zoning monitoring and control, strengthen soil pollution prevention and control, and reduce human input of heavy metals in soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Child , Adult , Humans , Environmental Monitoring , Soil , Cadmium/analysis , Soil Pollutants/analysis , Metals, Heavy/analysis , Risk Assessment , China
20.
Huan Jing Ke Xue ; 45(5): 3016-3026, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629562

ABSTRACT

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.


Subject(s)
Soil Pollutants , Sorghum , Cadmium/analysis , Biodegradation, Environmental , Soil , Sand , Citric Acid , Soil Pollutants/analysis , China , Edible Grain/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...